若將代表式中的任意兩個(gè)字母交換,代數(shù)式不變,則稱這個(gè)代數(shù)式為完全對(duì)稱式,如a+b+c就是完全對(duì)稱式,下列三個(gè)代數(shù)式,
①(a-b)的平方,
②ab+bc+ca,
③a平方b+b平方c+c平方a,其中完全對(duì)稱式的個(gè)數(shù)為()
A.0
B.1
C.2
D.3
您可能感興趣的試卷
你可能感興趣的試題
A.一正一負(fù)
B.互為倒數(shù)
C.都等于0
D.互為相反數(shù)
A.40°
B.50°
C.60°
D.70°
A.3
B.5
C.4
D.6
最新試題
史密斯-拉根模型的策略設(shè)計(jì)不包括()
小學(xué)數(shù)學(xué)定律定理的教學(xué)難點(diǎn)是()。
提出“動(dòng)作-表象-符號(hào)”兒童認(rèn)知發(fā)展程序的心理學(xué)家是()
一個(gè)教師上小學(xué)數(shù)學(xué)課時(shí),為了體現(xiàn)數(shù)學(xué)嚴(yán)謹(jǐn)性,講授內(nèi)容邏輯性特強(qiáng),結(jié)果絕大多數(shù)學(xué)生不知所云,這個(gè)現(xiàn)象說(shuō)明這個(gè)老師沒(méi)有遵循()。
表征自然界不同事物數(shù)量之間的聯(lián)系,以數(shù)學(xué)符號(hào)語(yǔ)言表達(dá)的一種數(shù)學(xué)命題,是小學(xué)數(shù)學(xué)規(guī)則中的()。
使用“會(huì)用自己選擇的量具測(cè)量物體的長(zhǎng)度”、“能夠準(zhǔn)確計(jì)算圓的面積”等語(yǔ)句陳述知識(shí)與技能的教學(xué)目標(biāo),體現(xiàn)出教學(xué)目標(biāo)設(shè)計(jì)的()原則。
在小學(xué)數(shù)學(xué)教材中,幾乎每一課時(shí)都呈現(xiàn)情景圖,這體現(xiàn)出小學(xué)數(shù)學(xué)的()。
建構(gòu)主義學(xué)習(xí)理論指導(dǎo)下現(xiàn)代數(shù)學(xué)教學(xué)設(shè)計(jì)的第一原則是()
數(shù)學(xué)教育的終極目標(biāo)是讓學(xué)生掌握數(shù)學(xué)中的抽象方法和()
小學(xué)數(shù)學(xué)教學(xué)的“四基”是指()。