A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM
您可能感興趣的試卷
你可能感興趣的試題
A.平方歐幾里德距離
B.余弦距離
C.直接相似度
D.共享最近鄰
以下是哪一個(gè)聚類算法的算法流程()。
①構(gòu)造k-最近鄰圖。
②使用多層圖劃分算法劃分圖。
③repeat:合并關(guān)于相對(duì)互連性和相對(duì)接近性而言,最好地保持簇的自相似性的簇。
④until:不再有可以合并的簇。
A.MST
B.OPOSSUM
C.Chameleon
D.Jarvis-Patrick(JP)
A.K均值丟棄被它識(shí)別為噪聲的對(duì)象,而DBSCAN一般聚類所有對(duì)象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會(huì)合并有重疊的簇
A.基于圖的凝聚度
B.基于原型的凝聚度
C.基于原型的分離度
D.基于圖的凝聚度和分離度
A.O(m)
B.O(m2)
C.O(logm)
D.O(m*logm)
最新試題
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲(chǔ)。
任何對(duì)數(shù)據(jù)處理與存儲(chǔ)系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。