A.平方歐幾里德距離
B.余弦距離
C.直接相似度
D.共享最近鄰
您可能感興趣的試卷
你可能感興趣的試題
以下是哪一個(gè)聚類算法的算法流程()。
①構(gòu)造k-最近鄰圖。
②使用多層圖劃分算法劃分圖。
③repeat:合并關(guān)于相對互連性和相對接近性而言,最好地保持簇的自相似性的簇。
④until:不再有可以合并的簇。
A.MST
B.OPOSSUM
C.Chameleon
D.Jarvis-Patrick(JP)
A.K均值丟棄被它識別為噪聲的對象,而DBSCAN一般聚類所有對象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會(huì)合并有重疊的簇
A.基于圖的凝聚度
B.基于原型的凝聚度
C.基于原型的分離度
D.基于圖的凝聚度和分離度
A.O(m)
B.O(m2)
C.O(logm)
D.O(m*logm)
A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Ward方法
最新試題
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
使用正則表達(dá)式可以找到一個(gè)文本文件中所有可能出現(xiàn)的手機(jī)號碼。
由于決策樹學(xué)會(huì)了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。
使用偏差較小的模型總是比偏差較大的模型更好。
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。