A.概率
B.鄰近度
C.密度
D.聚類
您可能感興趣的試卷
你可能感興趣的試題
A.STING
B.WaveCluster
C.MAFIA
D.BIRCH
A.當(dāng)簇只包含少量數(shù)據(jù)點,或者數(shù)據(jù)點近似協(xié)線性時,混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因為它可以使用各種類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點時不會存在問題
A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE
A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM
A.平方歐幾里德距離
B.余弦距離
C.直接相似度
D.共享最近鄰
最新試題
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
支持向量機不適合大規(guī)模數(shù)據(jù)。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
數(shù)據(jù)存儲體系中并不牽扯計算機網(wǎng)絡(luò)這一環(huán)節(jié)。
經(jīng)常跟管理層打交道并進行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
當(dāng)反向傳播算法運行到達到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。