已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm)??傻贸鲞@個幾何體的體積是()cm3。
A.
B.
C.
D.
您可能感興趣的試卷
你可能感興趣的試題
在△ABC中,C=90°,且CA=CB=3,點M滿足,=()。
A.2
B.3
C.4
D.6
A.單調(diào)增大
B.單調(diào)減少
C.保持不變
D.增減不變
若,則在S1,S2,……,S100中,正數(shù)的個數(shù)是()。
A.16
B.72
C.86
D.100
為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息。設(shè)定原信息為a0a1a2,a∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中,,運算規(guī)則為:,例如原信息為111,則傳輸信息為01111。傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是()。
A.11010
B.01100
C.10111
D.00011
A.θ>,m>n
B.θ>φ,m
C.θ<φ,m
D.θ<φ,m>n,
最新試題
設(shè)f(x),g(x)在[0,1]上的導數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當x∈(0,x1)時,證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足
已知,,(1)求tan2α的值:(2)求β。
已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項公式。
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。
求.
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系。已知點A的極坐標為,直線l的極坐標方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學會納悶,今天老師上數(shù)學課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學習的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學有什么好處?(2)簡單談?wù)剶?shù)學教學過程中怎樣調(diào)動學生的學習熱情激發(fā)學習興趣。
已知直線l:ax+y=1在矩陣對應的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實數(shù)a,b的值;(2)若點P(x0,y0),在直線l上,且,求點P的坐標。