將下述變上限求積公式:化為等價(jià)的常數(shù)分非常初值問(wèn)題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時(shí)的定積分值。
您可能感興趣的試卷
最新試題
試以Givens平面旋轉(zhuǎn)變換求出Hessenberg矩陣的QR分解。
是A的相應(yīng)λi的特征向量,是A的相應(yīng)λj的特征向量。
試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤4的Euler格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=0.2。
試以冪法求出如下矩陣的對(duì)應(yīng)于特征值λ=4的特征向量:;取初始向量;
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤2,首先利用精確解表達(dá)式y(tǒng)=x+e-x,計(jì)算出啟動(dòng)值y(0.1)=1.005,y(0.2)=1.019,y(0.3)=1.041;再分別應(yīng)用四步四階顯式Milne格式和三步四階隱式Hamming格式。取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5
試求出如下m階三對(duì)角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
將下述變上限求積公式:化為等價(jià)的常數(shù)分非常初值問(wèn)題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時(shí)的定積分值。