單項選擇題下面關(guān)于Jarvis-Patrick(JP)聚類算法的說法不正確的是()。

A.JP聚類擅長處理噪聲和離群點(diǎn),并且能夠處理不同大小、形狀和密度的簇
B.JP算法對高維數(shù)據(jù)效果良好,尤其擅長發(fā)現(xiàn)強(qiáng)相關(guān)對象的緊致簇
C.JP聚類是基于SNN相似度的概念
D.JP聚類的基本時間復(fù)雜度為O(m)


您可能感興趣的試卷

你可能感興趣的試題

2.單項選擇題以下哪個聚類算法不屬于基于網(wǎng)格的聚類算法()。

A.STING
B.WaveCluster
C.MAFIA
D.BIRCH

3.單項選擇題關(guān)于混合模型聚類算法的優(yōu)缺點(diǎn),下面說法正確的是()。

A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時,混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時不會存在問題

4.單項選擇題以下哪個聚類算法不是屬于基于原型的聚類()。

A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE

5.單項選擇題以下屬于可伸縮聚類算法的是()。

A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM

最新試題

隨機(jī)梯度下降每次更新執(zhí)行的計算量少于批梯度下降。

題型:判斷題

公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。

題型:判斷題

數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。

題型:判斷題

根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。

題型:判斷題

對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。

題型:判斷題

無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。

題型:判斷題

給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。

題型:判斷題

經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。

題型:判斷題

使決策樹更深將確保更好的擬合度,但會降低魯棒性。

題型:判斷題

數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應(yīng)的數(shù)據(jù)。

題型:判斷題