問答題

請以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計。
(1)教學(xué)目標(biāo);
(2)教學(xué)重點、難點;
(3)教學(xué)過程(只要求寫出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計意圖。


您可能感興趣的試卷

你可能感興趣的試題

4.問答題

案例:閱讀下列兩位教師的教學(xué)過程。
教師甲的教學(xué)過程:
師:在一個風(fēng)雨交加的夜里,從某水庫閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長的線路,如何迅速查出故障所在?
如果沿著線路一小段一小段查找,困難很多。每查一個點要爬一次10km長的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?
生1:直接一個個電線桿去尋找。
生2:先找中點,縮小范圍,再找剩下來一半的中點。
師:生2的方法是不是對呢?我們一起來考慮一下。

如圖,維修工人首先從中點C查,用隨身帶的話機向兩個端點測試時,發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點D,這次發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD中點E來查。每查一次,可以把待查的線路長度縮減一半,如此查下去,不用幾次,就能把故障點鎖定在一兩根電線桿附近。
師:我們可以用一個動態(tài)過程來展示一下(展示多媒體課件)。
在一條線段上找某個特定點,可以通過取中點的方法逐步縮小特定點所在的范圍(即二分法思想)。
教師乙的教學(xué)過程:
師:大家都看過李詠主持的《幸運52》吧,今天咱也試一回(出示游戲:看商品、猜價格)。
生:積極參與游戲,課堂氣氛活躍。
師:競猜中,"高了"、"低了"的含義是什么?如何確定價格的最可能的范圍?
生:主持人"高了、低了"的回答是判斷價格所在區(qū)間的依據(jù)。
師:如何才能更快的猜中商品的預(yù)定價格?
生:回答各異。
老師由此引導(dǎo)學(xué)生說出"二分法"的思想,并向同學(xué)們引出二分法的概念。
問題:
(1)分析兩種情景引入的特點。
(2)結(jié)合案例,說明為什么要學(xué)習(xí)用二分法求方程的近似解。

最新試題

論述實施合作學(xué)習(xí)應(yīng)注意的幾個問題。

題型:問答題

如何處理面向全體學(xué)生與關(guān)注學(xué)生個體差異的關(guān)系?

題型:問答題

已知函數(shù)。(1)當(dāng)時,求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實數(shù)a的取值范圍。

題型:問答題

設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足

題型:問答題

在三角形ABC中,∠BAC=90°,AB=AC,若點D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關(guān)系,并結(jié)合圖2給出證明。(2)若點D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關(guān)系式。

題型:問答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系。已知點A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。

題型:問答題

已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時,(ka-b)⊥(a+2b)。

題型:問答題

設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有

題型:問答題

甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。

題型:問答題

已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項公式。

題型:問答題