A.頂點方體
B.方體的格
C.基本方體
D.維
您可能感興趣的試卷
你可能感興趣的試題
A.上卷(roll-up)
B.選擇(select)
C.切片(slice)
D.轉(zhuǎn)軸(pivot)
A.上卷
B.下鉆
C.切塊
D.轉(zhuǎn)軸
A.分布的
B.代數(shù)的
C.整體的
D.混合的
A.空缺值
B.噪聲數(shù)據(jù)
C.不一致數(shù)據(jù)
D.敏感數(shù)據(jù)
A.數(shù)據(jù)壓縮
B.數(shù)據(jù)概化
C.維歸約
D.規(guī)范化
最新試題
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
最大似然估計的一個缺點是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計算機手段來完成。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。
使用偏差較小的模型總是比偏差較大的模型更好。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進行分類,因此它們不可能過度擬合。