A.分布的
B.代數(shù)的
C.整體的
D.混合的
您可能感興趣的試卷
你可能感興趣的試題
A.空缺值
B.噪聲數(shù)據(jù)
C.不一致數(shù)據(jù)
D.敏感數(shù)據(jù)
A.數(shù)據(jù)壓縮
B.數(shù)據(jù)概化
C.維歸約
D.規(guī)范化
A.設(shè)備異常
B.命名規(guī)則的不一致
C.與其他已有數(shù)據(jù)不一致而被刪除
D.在輸入時(shí),有些數(shù)據(jù)因?yàn)榈貌坏街匾暥鴽]有被輸入
A.數(shù)據(jù)中的空缺值
B.噪聲數(shù)據(jù)
C.數(shù)據(jù)中的不一致性
D.數(shù)據(jù)中的概念分層
A.平滑
B.聚集
C.數(shù)據(jù)概化
D.規(guī)范化
最新試題
數(shù)據(jù)收集中的拉模式需要通過定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會(huì)成倍的降低訪問時(shí)間。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
由于決策樹學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
使決策樹更深將確保更好的擬合度,但會(huì)降低魯棒性。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。