A.數(shù)據(jù)倉庫就是數(shù)據(jù)庫
B.數(shù)據(jù)倉庫是一切商業(yè)智能系統(tǒng)的基礎(chǔ)
C.數(shù)據(jù)倉庫是面向業(yè)務(wù)的,支持聯(lián)機(jī)事務(wù)處理(OLTP)
D.數(shù)據(jù)倉庫支持決策而非事務(wù)處理
E.數(shù)據(jù)倉庫的主要目標(biāo)就是幫助分析,做長期性的戰(zhàn)略制定
您可能感興趣的試卷
你可能感興趣的試題
A.主成分分析
B.特征提取
C.奇異值分解
D.特征加權(quán)
E.離散化
A.連續(xù)性
B.維度
C.稀疏性
D.分辨率
E.相異性
A.時序數(shù)據(jù)
B.序列數(shù)據(jù)
C.時間序列數(shù)據(jù)
D.事務(wù)數(shù)據(jù)
E.空間數(shù)據(jù)
A.不一致
B.重復(fù)
C.不完整
D.含噪聲
E.維度高
A.矩陣
B.平行坐標(biāo)系
C.星形坐標(biāo)
D.散布圖
E.Chernoff臉
最新試題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機(jī)森林通常比AdaBoost更好。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應(yīng)的數(shù)據(jù)。
通過統(tǒng)計學(xué)可以推測擲兩個撒子同時選中3點的幾率。