最新試題
關(guān)于多自由度系統(tǒng),下列說法正確的是()。
?如圖所示兩個(gè)相同的圓盤通過一剛度系數(shù)為k的彈簧相連,圓盤在水平面上作純滾動(dòng)。設(shè)圓盤半徑為r,質(zhì)量為。顯然這是一個(gè)兩自由度系統(tǒng),且存在一剛體模式。問系統(tǒng)不等于零的那一個(gè)固有頻率是多少?()
一質(zhì)量為M的鋼制剛架,用長度2L的張緊的鋼絲連接,每根鋼絲張力為T,如圖所示。一質(zhì)量塊m用兩只彈性常數(shù)為k的彈簧系于剛架內(nèi)部,列寫系統(tǒng)振動(dòng)微分方程為,,其中x1,x2分別是剛架和質(zhì)量塊的位移。問剛度矩陣K為()。
如圖所示梁的質(zhì)量重G=20KN,振動(dòng)力最大值P=4.8KN,干擾頻率θ=30(1/s),已知梁的E=210GPa,I=1.6*10-4m4。試求兩質(zhì)點(diǎn)處的最大豎向位移。梁自重不計(jì)。
一多自由度無阻尼彈簧質(zhì)量塊系統(tǒng),其振動(dòng)微分方程為?如果取廣義坐標(biāo),則新的以為未知量的微分方程中()。
?一長為l的簡支梁中部有一個(gè)集中質(zhì)量塊M=ρAl,如圖所示。梁的抗彎剛度EJ,密度ρ和截面積A均為已知。A同學(xué)采取單自由度的簡化方式,將簡支梁視為剛度為的彈簧,很快給出系統(tǒng)基頻的估計(jì)值ω1A;同學(xué)B覺得此法過于簡化,可能存在較大誤差,于是他決定采用連續(xù)體近似解法中的假設(shè)模態(tài)法來求解,假設(shè)振型取為,得到基頻估計(jì)值ω1B。問為多少?()
試求圖a所示剛架的自振頻率和主振型。EI=常數(shù)。
?如圖懸臂梁端有一小質(zhì)量塊m,質(zhì)量塊同時(shí)被兩根剛度系數(shù)為k的彈簧所支撐,彈簧與地面夾角均為45°,梁的抗彎剛度EJ,長度l均為已知。現(xiàn)將此系統(tǒng)等效為一單自由度系統(tǒng),請(qǐng)給出其固有頻率()。
?一均質(zhì)等截面細(xì)長直桿做縱向振動(dòng),在兩端固定和兩端自由兩種不同邊界條件下,關(guān)于它們的頻率方程和振型函數(shù)的說法正確的是()(不考慮自由桿的ω1=0)。
多自由度系統(tǒng),C為比例阻尼模型。按無阻尼情況求得各階主振型,并構(gòu)成模態(tài)矩陣。則在模態(tài)疊加法的解法過程中()。