A.y=|x|
B.
C.
D.y=|sinx|
您可能感興趣的試卷
你可能感興趣的試題
已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm)??傻贸鲞@個幾何體的體積是()cm3。
A.
B.
C.
D.
在△ABC中,C=90°,且CA=CB=3,點M滿足,=()。
A.2
B.3
C.4
D.6
A.單調(diào)增大
B.單調(diào)減少
C.保持不變
D.增減不變
若,則在S1,S2,……,S100中,正數(shù)的個數(shù)是()。
A.16
B.72
C.86
D.100
為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息。設(shè)定原信息為a0a1a2,a∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中,,運算規(guī)則為:,例如原信息為111,則傳輸信息為01111。傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是()。
A.11010
B.01100
C.10111
D.00011
最新試題
在高中數(shù)學課程中為什么要講微積分初步?
已知函數(shù)。(1)當時,求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實數(shù)a的取值范圍。
如何理解高中數(shù)學課程的過程性目標?
論述實施合作學習應注意的幾個問題。
一商家銷售某種商品的價格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?
高中"隨機抽樣"設(shè)定的教學目標如下:①通過對具體的案例分析,逐步學會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務:(1)根據(jù)教學目標①,設(shè)計至少兩個問題,并說明設(shè)計意圖;(2)根據(jù)教學目標②,給出至少兩個實例,并說明設(shè)計意圖;(3)根據(jù)教學目標③,設(shè)計問題鏈(至少包含兩個問題),并說明設(shè)計意圖;(4)相對義務教育階段的統(tǒng)計教學,本節(jié)課的教學重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?
高中"等差數(shù)列"設(shè)定的教學目標如下:①通過實例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應的問題,體會等差數(shù)列與一次函數(shù)的關(guān)系:③讓學生對日常生活中的實際問題進行分析,引導學生通過觀察,推導,歸納抽象出等差數(shù)列的概念:由學生建立等差數(shù)列模型用相關(guān)知識解決一些簡單的問題,進行等差數(shù)列通項公式應用的實踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達式得到對等差數(shù)列相應問題的研究。完成下列任務:(1)根據(jù)教學目標①,給出至少三個實例,并說明設(shè)計意圖;(2)根據(jù)教學目標②,設(shè)計至少兩個問題,讓學生用等差數(shù)列求解,并說明設(shè)計意圖;(3)確定本節(jié)課的教學重點;(4)作為高中階段的重點內(nèi)容,其難點是什么?(5)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?
已知,,(1)求tan2α的值:(2)求β。
已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;(2)當a·b取得最大值時,求實數(shù)λ,使a+λb的值最小,并對這一結(jié)論作出幾何解釋。
已知函數(shù)f(x)=x-alnx(a∈R)(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。