單項(xiàng)選擇題卡瓦列里的()使得他解決了球體積的問(wèn)題,也促進(jìn)了微積分的發(fā)展。

A、不可分量原理
B、重心平衡原理
C、表面趨近原理
D、體積分量原理


您可能感興趣的試卷

你可能感興趣的試題

1.單項(xiàng)選擇題日本人利用()的方法計(jì)算出了粗略的球的體積。

A、組合
B、尺規(guī)作圖
C、假設(shè)法
D、切片

2.單項(xiàng)選擇題()運(yùn)用了余弦定理計(jì)算橢圓的面積。

A、《論切觸》
B、《圓錐曲線的幾何性質(zhì)》
C、《圓錐曲線論》
D、《圓錐曲線之代數(shù)體系》

3.單項(xiàng)選擇題N.Guisnee在1705年出版的()中對(duì)橢圓面積的計(jì)算依然與圓錐有密切關(guān)系。

A、《代數(shù)在幾何上的應(yīng)用》
B、《圓錐曲線解析》
C、《圓錐曲線論》
D、《圓錐曲線的幾何性質(zhì)》

4.單項(xiàng)選擇題()運(yùn)用了古代兩河流域運(yùn)用的和差的方法計(jì)算橢圓的面積。

A、《圓錐曲線之代數(shù)體系》
B、《圓錐曲線解析》
C、《代數(shù)在幾何上的應(yīng)用》
D、《論切觸》

5.單項(xiàng)選擇題阿基米德通過(guò)()求出了球的體積。

A、邏輯推演
B、等比求和法
C、杠桿原理
D、尺規(guī)作圖法