體育老師對九年級(1)班學生“你最喜歡的體育項目是什么?(只寫一項)”的問題進行了調(diào)查,把所得數(shù)據(jù)繪制成頻數(shù)分布直方圖(如圖)。由圖可知,最喜歡籃球的頻率是()。
A.0.16
B.0.24
C.0.3
D.0.4
您可能感興趣的試卷
你可能感興趣的試題
A.3,24,33
B.31,47,147
C.133,153,193
D.102,132,159
A.0.1536
B.0.1808
C.0.5632
D.0.9728
A.分層抽樣法,系統(tǒng)抽樣法
B.分層抽樣法,簡單隨機抽樣法
C.系統(tǒng)抽樣法,分層抽樣法
D.簡單隨機抽樣法,分層抽樣法
A.100個吸煙者中至少有99人患有肺癌
B.100個吸煙者中可能一個患肺癌的人也沒有
C.1個人吸煙,那么這個人有99%的概率患有肺癌
D.100個吸煙者中一定有患肺癌的人
A.期望反映隨機變量取值的平均水平,方差反映隨機變量取值集中與離散的程度
B.期望與方差都是一個數(shù)值,它們不隨試驗的結(jié)果而變化
C.方差是一個非負數(shù)
D.期望是區(qū)間[0,1]上的一個數(shù)
最新試題
某公司在甲、乙、丙、丁四個地區(qū)分別有150個、120個、180個、150個銷售點。公司為了調(diào)查產(chǎn)品銷售的情況,需從這600個銷售點中抽取一個容量為100的樣本,記這項調(diào)查為①;在丙地區(qū)中有20個特大型銷售點,要從中抽取7個調(diào)查其銷售收入和售后服務情況,記這項調(diào)查為②。則完成①、②這兩項調(diào)查宜采用的抽樣方法依次是()。
下面關于離散型隨機變量的期望與方差的結(jié)論錯誤的是()。
有5個編號為1、2、3、4、5的紅球和5個編號為1、2、3、4、5的黑球,從這10個球中取出4個,則取出的球的編號互不相同的概率為()。
從某批產(chǎn)品中,有放回地抽取產(chǎn)品兩次,每次隨機抽取1件,假設事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96。(1)求從該批產(chǎn)品中任取1件是二等品的概率p;(2)若該批產(chǎn)品共100件,從中任意抽取2件,求事件B:“取出的2件產(chǎn)品中至少有一件二等品”的概率P(B)。
在研究吸煙與患肺癌的關系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關”的結(jié)論,并且有99%以上的把握認為這個結(jié)論是成立的,下列說法中正確的是()。
將溫度調(diào)節(jié)器放置在貯存著某種液體的容器內(nèi),調(diào)節(jié)器設定在d℃,液體的溫度ξ(單位:℃)是一個隨機變量,且ξ~N(d,0.52)。(1)若d=90℃,則ξ<89的概率為多少?(2)若要保持液體的溫度至少為80℃的概率不低于0.99,則d至少是多少?(其中若η~N(0,1),則
某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5?,F(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有16件。求此樣本的容量n。
下列隨機變量中,不是離散型隨機變量的是()。
甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為。求:(1)記甲擊中目標的次數(shù)為ξ,ξ的概率分布及數(shù)學期望;(2)乙至多擊中目標2次的概率;(3)甲恰好比乙多擊中目標2次的概率。
一臺X型號的自動機床在一小時內(nèi)不需要人照看的概率為0.8000,有四臺這種型號的自動機床各自獨立工作,則在一小時內(nèi)至多有2臺機床需要工人照看的概率是()。