點(0,1)是曲線y=ax3+bx+c的拐點,則a、b、c的值分別為()
A.a=1,b=-3,c=-2 B.a≠0的實數(shù),b為任意實數(shù),c=1 C.a=1,b=0,c=2 D.a=0、b為任意實數(shù),c=1
過點M0(-1,1)且與曲線2ex-2cosy-1=0上點(0,π/3)的切線相垂直的直線方程是:()
A.y-π/3=(/2)x B.y-π/3=-(2/)x C.y-1=(/2)(x+1) D.y-1=-(2/)(x+1)
已知由方程siny+xey=0,確定y是x的函數(shù),則dy/dx的值是:()
A.-(ey+cosy)/xey B.-ey/cosy C.-ey/(cosy+xey) D.-cosy/xey